हिंदी

Solve the following differential equation. dydx+2xy=x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

`dy/dx + 2xy = x`

योग

उत्तर

`dy/dx + 2xy = x`

The given equation is of the form

`dy/dx + py = Q`

where, P = 2x and Q = x

∴ `I.F. = e^(intPdx) = e^ (int ^(2x  dx) = e^(x^2)`

∴ Solution of the given equation is

y(I.F.) = `int Q ( I.F.) dx +c`

∴ `y e ^(x^2)  int xe^(x^2) dx + c `

In R. H. S., put x2 = t

Differentiating w.r.t. x, we get

2x dx = dt 

∴ `ye^(x^2) = int e^t dt/2 + c `

= `1/2 int e^t dt+ c `

= `e^t/2 + c`

∴ `y e ^(x^2) = 1/2 e^(x^2) + c`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.5 [पृष्ठ १६८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.5 | Q 1.6 | पृष्ठ १६८

संबंधित प्रश्न

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[x\frac{dy}{dx} + y = y^2\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

(x + y) (dx − dy) = dx + dy


\[xy\frac{dy}{dx} = x^2 - y^2\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


y dx – x dy + log x dx = 0


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×