Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]
\[\Rightarrow \frac{dy}{dx} = - \frac{\left( 1 + y^2 \right)}{y}\]
\[ \Rightarrow \frac{dx}{dy} = - \frac{y}{1 + y^2}\]
\[ \Rightarrow dx = \left( - \frac{y}{1 + y^2} \right)dy\]
Integrating both sides, we get
\[\int dx = \int\left( - \frac{y}{1 + y^2} \right)dy\]
\[ \Rightarrow x = \int\left( - \frac{y}{1 + y^2} \right)dy\]
\[\text{ Putting }1 + y^2 = t, \text{ we get }\]
\[2y dy = dt\]
\[ \therefore x = - \frac{1}{2}\int\frac{1}{t}dt\]
\[ \Rightarrow x = - \frac{1}{2}\log\left| t \right| + C\]
\[ \Rightarrow x = - \frac{1}{2}\log\left| 1 + y^2 \right| + C\]
\[ \Rightarrow x + \frac{1}{2}\log\left| 1 + y^2 \right| = C\]
\[\text{ Hence, }x + \frac{1}{2}\log\left| 1 + y^2 \right| =\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
(1 + x2) dy = xy dx
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
A population grows at the rate of 5% per year. How long does it take for the population to double?
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Solve:
(x + y) dy = a2 dx
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to:
Solve the differential equation
`y (dy)/(dx) + x` = 0