Advertisements
Advertisements
प्रश्न
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
विकल्प
sec x + tan x
log (sec x + tan x)
esec x
sec x
उत्तर
sec x + tan x
We have,
\[\frac{dy}{dx} + y \sec x = \tan x\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q, \text{ we get }\]
\[P = \sec x \]
\[Q = \tan x\]
Now,
\[I . F . = e^{\int\sec xdx} \]
\[ = e^{log\left( \sec x + \tan x \right)} \]
\[ = \sec x + \tan x\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
Solve
`dy/dx + 2/ x y = x^2`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
Solve the differential equation
`y (dy)/(dx) + x` = 0