Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \tan\left( x + y \right)\]
\[\frac{dy}{dx} = \frac{\sin\left( x + y \right)}{\cos\left( x + y \right)}\]
Let x + y = v
\[ \therefore 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = \frac{\sin v}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\sin v}{\cos v} + 1\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\sin v + \cos v}{\cos v}\]
\[ \Rightarrow \frac{\cos v}{\sin v + \cos v}dv = dx\]
Integrating both sides, we get
\[\int\frac{\cos v}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{\left( \sin v + \cos v \right) + \left( \cos v - \sin v \right)}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int dv + \frac{1}{2}\int\frac{\cos v - \sin v}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\int\frac{\cos v - \sin v}{\sin v + \cos v}dv = x\]
\[\text{ Putting }\sin v + \cos v = t\]
\[ \Rightarrow \left( \cos v - \sin v \right)dv = dt\]
\[ \therefore \frac{1}{2}v + \frac{1}{2}\int\frac{dt}{t} = x\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\log \left| t \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( x + y \right) + \frac{1}{2}\log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( y - x \right) + \frac{1}{2}\log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = C\]
\[ \Rightarrow \left( y - x \right) + \log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = 2C\]
\[ \Rightarrow y - x + \log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = K ...........\left(\text{where, }K = 2C \right)\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
y2 dx + (x2 − xy + y2) dy = 0
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve:
(x + y) dy = a2 dx
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
The function y = ex is solution ______ of differential equation
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.