हिंदी

D Y D X = Tan ( X + Y ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \tan\left( x + y \right)\]
योग

उत्तर

We have,
\[\frac{dy}{dx} = \tan\left( x + y \right)\]
\[\frac{dy}{dx} = \frac{\sin\left( x + y \right)}{\cos\left( x + y \right)}\]
Let x + y = v
\[ \therefore 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = \frac{\sin v}{\cos v}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\sin v}{\cos v} + 1\]
\[ \Rightarrow \frac{dv}{dx} = \frac{\sin v + \cos v}{\cos v}\]
\[ \Rightarrow \frac{\cos v}{\sin v + \cos v}dv = dx\]
Integrating both sides, we get
\[\int\frac{\cos v}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int\frac{\left( \sin v + \cos v \right) + \left( \cos v - \sin v \right)}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}\int dv + \frac{1}{2}\int\frac{\cos v - \sin v}{\sin v + \cos v}dv = \int dx\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\int\frac{\cos v - \sin v}{\sin v + \cos v}dv = x\]
\[\text{ Putting }\sin v + \cos v = t\]
\[ \Rightarrow \left( \cos v - \sin v \right)dv = dt\]
\[ \therefore \frac{1}{2}v + \frac{1}{2}\int\frac{dt}{t} = x\]
\[ \Rightarrow \frac{1}{2}v + \frac{1}{2}\log \left| t \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( x + y \right) + \frac{1}{2}\log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = x + C\]
\[ \Rightarrow \frac{1}{2}\left( y - x \right) + \frac{1}{2}\log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = C\]
\[ \Rightarrow \left( y - x \right) + \log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = 2C\]
\[ \Rightarrow y - x + \log \left| \sin \left( x + y \right) + \cos \left( x + y \right) \right| = K ...........\left(\text{where, }K = 2C \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.08 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.08 | Q 8 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[xy\frac{dy}{dx} = x^2 - y^2\]

(x + 2y) dx − (2x − y) dy = 0


\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]

Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


y2 dx + (x2 − xy + y2) dy = 0


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve:

(x + y) dy = a2 dx


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


The function y = ex is solution  ______ of differential equation


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×