हिंदी

(X + 2y) Dx − (2x − Y) Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(x + 2y) dx − (2x − y) dy = 0

उत्तर

\[\left( x + 2y \right)dx - \left( 2x - y \right) dy = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{2x - y}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{x + 2vx}{2x - vx}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{2 - v} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + v^2}{2 - v}\]
\[ \Rightarrow \frac{2 - v}{1 + v^2}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{2 - v}{1 + v^2}dv = \int\frac{1}{x}dx . . . . . (1)\]
\[ \Rightarrow \int\frac{2}{1 + v^2}dv - \int\frac{v}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int\frac{2}{1 + v^2}dv - \frac{1}{2}\int\frac{2v}{1 + v^2}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow 2 \tan^{- 1} v - \frac{1}{2}\log \left| 1 + v^2 \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow 2 \tan^{- 1} v = \log \left| x \right| + \log C + \log \left| \left( 1 + v^2 \right)^\frac{1}{2} \right|\]
\[ \Rightarrow 2 \tan^{- 1} v = \log \left| Cx\sqrt{1 + v^2} \right|\]
\[ \Rightarrow \left| Cx\sqrt{1 + v^2} \right| = e^{2 \tan^{- 1} v} \]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \left| Cx\sqrt{1 + \left( \frac{y}{x} \right)^2} \right| = e^{2 \tan^{- 1} \left( \frac{y}{x} \right)} \]
\[ \Rightarrow C\sqrt{x^2 + y^2} = e^{2 \tan^{- 1} \left( \frac{y}{x} \right)} \]
\[\text{ Hence, }\sqrt{x^2 + y^2} = K e^{- 2 \tan^{- 1} \frac{y}{x}}\text{ is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.09 | Q 16 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[\frac{dy}{dx} = \log x\]

(ey + 1) cos x dx + ey sin x dy = 0


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


y dx – x dy + log x dx = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Solve: ydx – xdy = x2ydx.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×