Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
उत्तर
`y^3 - dy/dx = x dy/dx`
∴ `y^3 = (1+x) dy/dx`
∴ `dx/((1+x)) = dy/y^3`
Integrating on both sides, we get
`intdx/(1+x )= int dy/y^3`
∴ `log | 1+x| = -1/(2y^2 )+c`
∴ 2y2 log | 1 + x | = – 1 + 2y2c
APPEARS IN
संबंधित प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The differential equation satisfied by ax2 + by2 = 1 is
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is