Advertisements
Advertisements
Question
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solution
`y^3 - dy/dx = x dy/dx`
∴ `y^3 = (1+x) dy/dx`
∴ `dx/((1+x)) = dy/y^3`
Integrating on both sides, we get
`intdx/(1+x )= int dy/y^3`
∴ `log | 1+x| = -1/(2y^2 )+c`
∴ 2y2 log | 1 + x | = – 1 + 2y2c
APPEARS IN
RELATED QUESTIONS
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Solve the following differential equation.
dr + (2r)dθ= 8dθ
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.