English

Solve the following differential equation. y3-dydx=xdydx - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`

Sum

Solution

`y^3 - dy/dx = x dy/dx`

∴ `y^3 = (1+x) dy/dx`

∴ `dx/((1+x)) = dy/y^3`

Integrating on both sides, we get

`intdx/(1+x )= int dy/y^3`

∴ `log | 1+x| = -1/(2y^2 )+c`

∴ 2y2 log | 1 + x | = – 1 + 2y2c

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Exercise 8.3 [Page 165]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Exercise 8.3 | Q 1.4 | Page 165

RELATED QUESTIONS

Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = \sin^2 y\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

x2 dy + y (x + y) dx = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

dr + (2r)dθ= 8dθ


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×