English

Solve the Differential Equation ( 1 + X 2 ) D Y D X + ( 1 + Y 2 ) = 0 , Given that Y = 1, When X = 0. - Mathematics

Advertisements
Advertisements

Question

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.

Sum

Solution

We have, 
\[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0 , y = 1\text{ when }x = 0\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} = - \left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{1}{1 + y^2} dy = - \frac{1}{\left( 1 + x^2 \right)}dx\]
Integrating both sides, we get
\[\int\frac{1}{1 + y^2} dy = - \int\frac{1}{\left( 1 + x^2 \right)}dx\]
\[ \Rightarrow \tan^{- 1} y = - \tan^{- 1} x + C\]
\[ \Rightarrow \tan^{- 1} y + \tan^{- 1} x = C . . . . . (1) \]
\[\text{ Given:- }x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[ \frac{\pi}{4} + 0 = C\]
\[ \Rightarrow C = \frac{\pi}{4}\]
Substituting the value of C in (1), we get
\[ \tan^{- 1} y + \tan^{- 1} x = \frac{\pi}{4}\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y = \frac{\pi}{4}\]
\[ \Rightarrow \tan^{- 1} \left( \frac{x + y}{1 - xy} \right) = \frac{\pi}{4}\]
\[ \Rightarrow \frac{x + y}{1 - xy} = 1\]
\[ \Rightarrow x + y = 1 - xy\]
\[\text{ Hence, }x + y = 1 - xy \text{ is the required solution .} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 56]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 47 | Page 56

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\sqrt{1 - x^4} dy = x\ dx\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

dy + (x + 1) (y + 1) dx = 0


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[x\frac{dy}{dx} = x + y\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The solution of `dy/ dx` = 1 is ______


`xy dy/dx  = x^2 + 2y^2`


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×