Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]
\[\Rightarrow \frac{dx}{dy} = \frac{y^3}{1 + y^2}\]
\[ \Rightarrow dx = \frac{y^3}{1 + y^2}dy\]
Integrating both sides, we get
\[\int dx = \int\frac{y^3}{1 + y^2}dy\]
\[ \Rightarrow x = \int\frac{y + y^3 - y}{1 + y^2}dy\]
\[ \Rightarrow x = \int\frac{\left( 1 + y^2 \right)y - y}{1 + y^2}dy\]
\[ \Rightarrow x = \int y dy - \int\frac{y}{1 + y^2}dy\]
\[ \Rightarrow x = \frac{y^2}{2} - \int\frac{y}{1 + y^2}dy\]
\[\text{ Putting }1 + y^2 = t \text{ we get }\]
\[2y dy = dt\]
\[ \therefore x = \frac{y^2}{2} - \frac{1}{2}\int\frac{1}{t}dt\]
\[ \Rightarrow x = \frac{y^2}{2} - \frac{1}{2}\log\left| t \right| + C\]
\[ \Rightarrow x = \frac{y^2}{2} - \frac{1}{2}\log\left| 1 + y^2 \right| + C ...........\left( \because t = 1 + y^2 \right)\]
\[\text{ Hence, }x = \frac{y^2}{2} - \frac{1}{2}\log\left| 1 + y^2 \right| +\text{ C is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(1 + x2) dy = xy dx
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
(x + y) (dx − dy) = dx + dy
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the differential equation whose general solution is
x3 + y3 = 35ax.
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve
`dy/dx + 2/ x y = x^2`
y2 dx + (xy + x2)dy = 0
`dy/dx = log x`
Solve the differential equation xdx + 2ydy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0