English

D Y D X = 1 + Y 2 Y 3 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]
Sum

Solution

We have, 
\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]
\[\Rightarrow \frac{dx}{dy} = \frac{y^3}{1 + y^2}\]
\[ \Rightarrow dx = \frac{y^3}{1 + y^2}dy\]
Integrating both sides, we get
\[\int dx = \int\frac{y^3}{1 + y^2}dy\]
\[ \Rightarrow x = \int\frac{y + y^3 - y}{1 + y^2}dy\]
\[ \Rightarrow x = \int\frac{\left( 1 + y^2 \right)y - y}{1 + y^2}dy\]
\[ \Rightarrow x = \int y dy - \int\frac{y}{1 + y^2}dy\]
\[ \Rightarrow x = \frac{y^2}{2} - \int\frac{y}{1 + y^2}dy\]
\[\text{ Putting }1 + y^2 = t \text{ we get }\]
\[2y dy = dt\]
\[ \therefore x = \frac{y^2}{2} - \frac{1}{2}\int\frac{1}{t}dt\]
\[ \Rightarrow x = \frac{y^2}{2} - \frac{1}{2}\log\left| t \right| + C\]
\[ \Rightarrow x = \frac{y^2}{2} - \frac{1}{2}\log\left| 1 + y^2 \right| + C ...........\left( \because t = 1 + y^2 \right)\]
\[\text{ Hence, }x = \frac{y^2}{2} - \frac{1}{2}\log\left| 1 + y^2 \right| +\text{ C is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.06 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.06 | Q 2 | Page 38

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

\[x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0\]

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

(1 + x2) dy = xy dx


\[x\frac{dy}{dx} + \cot y = 0\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} + 1 = e^{x + y}\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the differential equation whose general solution is

x3 + y3 = 35ax.


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve

`dy/dx + 2/ x y = x^2`


y2 dx + (xy + x2)dy = 0


 `dy/dx = log x`


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×