English

Solve the following differential equation ylogydxdy+x = log y - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y

Sum

Solution

`y log y ("d"x)/("d"y) + x` = log y

∴ `("d"x)/("d"y) + 1/(ylogy) x = 1/y`

The given equation is of the form `("d"x)/("d"y) + "P"x` = Q

where, P =`1/(ylogy)` and Q = `1/y`

∴ I.F. = `"e"^(int^("Pd"y)`

= `"e"^(int^(1/(ylogy) "d"y)`

= `"e"^(log |log y|)`

= log y

∴ Solution of the given equation is

x(I.F.) = `int "Q"("I.F.")  "d"y + "c"_1`

∴ x.logy = `int 1/y log y  "d"y + "c"_1`

In R. H. S., put log y = t

Differentiating w.r.t. x, we get

`1/y "d"y` = dt

∴ x log y = `int "t"  "dt" + "c"_1`

= `"t"^2/2 + "c"_1`

∴ x log y = `(log y)^2/2 + "c"_1`

∴ 2x log y = (log y)2 + c    ......[2c1 + c]

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.5

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Commerce) [English] 12 Standard HSC
Chapter 1.8 Differential Equation and Applications
Q.5 | Q 7

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

x cos y dy = (xex log x + ex) dx


\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve:

(x + y) dy = a2 dx


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×