मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation ylogydxdy+x = log y - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y

बेरीज

उत्तर

`y log y ("d"x)/("d"y) + x` = log y

∴ `("d"x)/("d"y) + 1/(ylogy) x = 1/y`

The given equation is of the form `("d"x)/("d"y) + "P"x` = Q

where, P =`1/(ylogy)` and Q = `1/y`

∴ I.F. = `"e"^(int^("Pd"y)`

= `"e"^(int^(1/(ylogy) "d"y)`

= `"e"^(log |log y|)`

= log y

∴ Solution of the given equation is

x(I.F.) = `int "Q"("I.F.")  "d"y + "c"_1`

∴ x.logy = `int 1/y log y  "d"y + "c"_1`

In R. H. S., put log y = t

Differentiating w.r.t. x, we get

`1/y "d"y` = dt

∴ x log y = `int "t"  "dt" + "c"_1`

= `"t"^2/2 + "c"_1`

∴ x log y = `(log y)^2/2 + "c"_1`

∴ 2x log y = (log y)2 + c    ......[2c1 + c]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.8: Differential Equation and Applications - Q.5

संबंधित प्रश्‍न

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

(x2 − y2) dx − 2xy dy = 0


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


The solution of `dy/ dx` = 1 is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×