Advertisements
Advertisements
प्रश्न
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
उत्तर
`y log y ("d"x)/("d"y) + x` = log y
∴ `("d"x)/("d"y) + 1/(ylogy) x = 1/y`
The given equation is of the form `("d"x)/("d"y) + "P"x` = Q
where, P =`1/(ylogy)` and Q = `1/y`
∴ I.F. = `"e"^(int^("Pd"y)`
= `"e"^(int^(1/(ylogy) "d"y)`
= `"e"^(log |log y|)`
= log y
∴ Solution of the given equation is
x(I.F.) = `int "Q"("I.F.") "d"y + "c"_1`
∴ x.logy = `int 1/y log y "d"y + "c"_1`
In R. H. S., put log y = t
Differentiating w.r.t. x, we get
`1/y "d"y` = dt
∴ x log y = `int "t" "dt" + "c"_1`
= `"t"^2/2 + "c"_1`
∴ x log y = `(log y)^2/2 + "c"_1`
∴ 2x log y = (log y)2 + c ......[2c1 + c]
APPEARS IN
संबंधित प्रश्न
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
(x2 − y2) dx − 2xy dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
The solution of `dy/ dx` = 1 is ______