Advertisements
Advertisements
प्रश्न
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
उत्तर
We have,
\[y^2 = 4a\left( x + a \right)...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[2y\frac{dy}{dx} = 4a\]
\[ \Rightarrow y\frac{dy}{dx} = 2a\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2a}{y} ..........(2)\]
Now,
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} - 2x\frac{dy}{dx}\]
\[ = y\left\{ 1 - \frac{4 a^2}{y^2} \right\} - 2x\left( \frac{2a}{y} \right)\]
\[ = y\left\{ \frac{y^2 - 4 a^2}{y^2} \right\} - \frac{4ax}{y}\]
\[ = \frac{y^2 - 4 a^2}{y} - \frac{4ax}{y}\]
\[ = \frac{\left( 4ax + 4 a^2 \right) - 4 a^2}{y} - \frac{4ax}{y} ...........\left[\text{Using }\left( 1 \right) \right]\]
\[ = \frac{4ax}{y} - \frac{4ax}{y} = 0\]
\[ \Rightarrow y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
(y + xy) dx + (x − xy2) dy = 0
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
The differential equation satisfied by ax2 + by2 = 1 is
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
y2 dx + (x2 − xy + y2) dy = 0
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve:
(x + y) dy = a2 dx
Solve
`dy/dx + 2/ x y = x^2`
y dx – x dy + log x dx = 0
The function y = ex is solution ______ of differential equation
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve: ydx – xdy = x2ydx.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to:
Solve the differential equation
`y (dy)/(dx) + x` = 0