Advertisements
Advertisements
प्रश्न
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
उत्तर
We have,
\[y = - x - 1...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = - 1.............(2)\]
Now,
\[\frac{dy}{dx} - \frac{y^2 - x^2}{y - x}\]
\[ = \frac{dy}{dx} - \left( y + x \right)\]
\[ = - 1 - \left( - x - 1 + x \right) ..........\left[ \text{Using }\left( 1 \right) \text{ and }\left( 2 \right) \right]\]
\[ = - 1 + 1 = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{y - x}\]
\[ \Rightarrow \left( y - x \right)dy = \left( y^2 - x^2 \right)dx\]
\[ \Rightarrow \left( y - x \right)dy - \left( y^2 - x^2 \right)dx = 0\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
C' (x) = 2 + 0.15 x ; C(0) = 100
y (1 + ex) dy = (y + 1) ex dx
(y + xy) dx + (x − xy2) dy = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
y2 dx + (x2 − xy + y2) dy = 0
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the differential equation:
dr = a r dθ − θ dr
y2 dx + (xy + x2)dy = 0
`xy dy/dx = x^2 + 2y^2`
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve: ydx – xdy = x2ydx.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.