मराठी

Verify That Y = − X − 1 is a Solution of the Differential Equation (Y − X) Dy − (Y2 − X2) Dx = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.

बेरीज

उत्तर

We have,
\[y = - x - 1...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = - 1.............(2)\]
Now,
\[\frac{dy}{dx} - \frac{y^2 - x^2}{y - x}\]
\[ = \frac{dy}{dx} - \left( y + x \right)\]
\[ = - 1 - \left( - x - 1 + x \right) ..........\left[ \text{Using }\left( 1 \right) \text{ and }\left( 2 \right) \right]\]
\[ = - 1 + 1 = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{y - x}\]
\[ \Rightarrow \left( y - x \right)dy = \left( y^2 - x^2 \right)dx\]
\[ \Rightarrow \left( y - x \right)dy - \left( y^2 - x^2 \right)dx = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 14 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

y (1 + ex) dy = (y + 1) ex dx


(y + xy) dx + (x − xy2) dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


y2 dx + (x2 − xy + y2) dy = 0


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the differential equation:

dr = a r dθ − θ dr


y2 dx + (xy + x2)dy = 0


`xy dy/dx  = x^2 + 2y^2`


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve: ydx – xdy = x2ydx.


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×