Advertisements
Advertisements
प्रश्न
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
उत्तर
`(x + 1) dy/dx -1 = 2e^(-y)`
∴ `(x + 1) dy /dx = 2/e^y + 1`
∴ `(x + 1) dy /dx = ((2+e^y))/e^y `
∴ `e^y /(2+e^y) dy= dx/(1+x)`
Integrating on both sides, we get
`int e^y/(2+e^y) dy = intdx/(1+x)`
∴ log| 2 + ey| = log |1 + x| + log |c|
∴ log |2 + ey| = log |c(1 + x)|
∴ 2 + ey = c (1 + x) ...(i)
When y = 0, x = 1, we have
2 + e0 = c (1 + 1)
∴ 2 + 1 = 2c
∴ c = `3/2`
Substituting c = `3/2` in (i), we get
`2 + e^y = 3/ 2 (1 + x)`
∴ 4 + 2ey = 3 + 3x
∴ 3x - 2ey - 1 = 0, which is the required particular solution.
APPEARS IN
संबंधित प्रश्न
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve:
(x + y) dy = a2 dx
Solve: `("d"y)/("d"x) + 2/xy` = x2
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.