मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

For the following differential equation find the particular solution. (x+1)dydx−1=2e−y, when y = 0, x = 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1

बेरीज

उत्तर

`(x + 1) dy/dx -1 = 2e^(-y)`

∴ `(x + 1) dy /dx = 2/e^y + 1`

∴ `(x + 1) dy /dx = ((2+e^y))/e^y `

∴ `e^y /(2+e^y) dy= dx/(1+x)`

Integrating on both sides, we get

`int e^y/(2+e^y) dy = intdx/(1+x)`

∴ log| 2 + ey| = log |1 + x| + log |c|

∴ log |2 + ey| = log |c(1 + x)|

∴ 2 + ey = c (1 + x)         ...(i)

When y = 0, x = 1, we have

2 + e0 = c (1 + 1)

∴ 2 + 1 = 2c

∴ c = `3/2`

Substituting c = `3/2` in (i), we get

`2 + e^y = 3/ 2 (1 + x)`

∴ 4 + 2ey = 3 + 3x

∴  3x - 2ey - 1 = 0, which is the required particular solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.3 [पृष्ठ १६५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.3 | Q 2.2 | पृष्ठ १६५

संबंधित प्रश्‍न

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve:

(x + y) dy = a2 dx


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×