Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\sqrt{1 - x^4}dy = x\ dx\]
\[ \Rightarrow dy = \frac{x}{\sqrt{1 - x^4}}dx\]
Integrating both sides, we get
\[\int dy = \int\frac{x}{\sqrt{1 - x^4}}dx\]
\[ \Rightarrow y = \int\frac{x}{\sqrt{1 - x^4}}dx\]
\[\text{ Putting }x^2 = t\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \therefore y = \frac{1}{2}\int\frac{dt}{\sqrt{1 - t^2}}\]
\[ = \frac{\sin^{- 1} t}{2} + C\]
\[ = \frac{1}{2} \sin^{- 1} \left( x^2 \right) + C\]
\[\text{ Hence, }y = \frac{1}{2} \sin^{- 1} \left( x^2 \right) +\text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
y (1 + ex) dy = (y + 1) ex dx
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
`xy dy/dx = x^2 + 2y^2`
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve: ydx – xdy = x2ydx.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is