Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \left( x + y + 1 \right)^2 \]
\[\text{ Putting }x + y + 1 = v\]
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{dv}{dx} - 1\]
\[ \therefore \frac{dv}{dx} - 1 = v^2 \]
\[ \Rightarrow \frac{dv}{dx} = v^2 + 1\]
\[ \Rightarrow \frac{1}{v^2 + 1}dv = dx\]
Integrating both sides, we get
\[\int\frac{1}{v^2 + 1}dv = \int dx\]
\[ \Rightarrow \tan^{- 1} v = x + C\]
\[ \Rightarrow \tan^{- 1} \left( x + y + 1 \right) = x + C\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
x cos2 y dx = y cos2 x dy
tan y dx + sec2 y tan x dy = 0
y (1 + ex) dy = (y + 1) ex dx
y ex/y dx = (xex/y + y) dy
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/ dx` = 1 is ______
Solve the differential equation:
`e^(dy/dx) = x`
`xy dy/dx = x^2 + 2y^2`
Solve: `("d"y)/("d"x) + 2/xy` = x2
The function y = ex is solution ______ of differential equation
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve: ydx – xdy = x2ydx.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx