मराठी

[ X √ X 2 + Y 2 − Y 2 ] D X + X Y D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0\]
बेरीज

उत्तर

We have, 
\[\left[ x\sqrt{x^2 + y^2} - y^2 \right]dx + xy\ dy = 0\]
\[\frac{dy}{dx} = \frac{y^2 - x\sqrt{x^2 + y^2}}{xy}\]
This is a homogeneous differential equation . 
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v^2 x^2 - x\sqrt{x^2 + v^2 x^2}}{v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v^2 - \sqrt{1 + v^2}}{v}\]
\[ \Rightarrow v + x\frac{dv}{dx} = v - \frac{\sqrt{1 + v^2}}{v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{- \sqrt{1 + v^2}}{v}\]
\[ \Rightarrow \frac{v}{\sqrt{1 + v^2}}dv = - \frac{1}{x}dx\]
\[\text{ Putting }1 + v^2 = t,\text{ we get }\]
\[v\ dv = \frac{dt}{2}\]
\[ \therefore \frac{1}{2\sqrt{t}}dt = - \frac{1}{x}dx\]
Integrating both sides, we get 
\[\int \frac{1}{2\sqrt{t}}dt = - \int\frac{1}{x}dx\]
\[ \Rightarrow \sqrt{t} = - \log \left| x \right| + \log C . . . . . (1)\]
Substituting the value of `t` in (1), we get
\[\sqrt{1 + v^2} = \log \left| \frac{C}{x} \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[ \Rightarrow \sqrt{y^2 + x^2} = x \log \left| \frac{C}{x} \right|\]
\[\text{ Hence, }\sqrt{y^2 + x^2} = x \log \left| \frac{C}{x} \right| \text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.09 [पृष्ठ ८३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.09 | Q 21 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

C' (x) = 2 + 0.15 x ; C(0) = 100


\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[x\frac{dy}{dx} + y = y^2\]

(1 − x2) dy + xy dx = xy2 dx


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


2xy dx + (x2 + 2y2) dy = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

dr + (2r)dθ= 8dθ


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve:

(x + y) dy = a2 dx


y2 dx + (xy + x2)dy = 0


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×