मराठी

D Y D X = Y Tan 2 X , Y ( 0 ) = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

उत्तर

We have,
\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\]
\[ \Rightarrow \frac{1}{y}dy = \tan 2x dx\]
Integrating both sides, we get 
\[\int\frac{1}{y}dy = \int\tan 2x dx\]
\[ \Rightarrow \log \left| y \right| = \frac{1}{2}\log \left| \sec 2x \right| + \frac{1}{2}\log C\]
\[ \Rightarrow y^2 = C \sec 2x . . . . . \left( 1 \right)\]
It is given that at x = 0, y = 2 . 
\[ \therefore C = 4\]
Substituting the value of C in (1), we get
\[ \therefore y^2 = \frac{4}{\cos 2x}\]
\[ \Rightarrow y = \frac{2}{\sqrt{\cos 2x}} \]
\[\text{ Hence, }y = \frac{2}{\sqrt{\cos 2x}} \text{ is the required solution }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 39 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} = \tan^{- 1} x\]


\[x\frac{dy}{dx} + \cot y = 0\]

tan y dx + sec2 y tan x dy = 0


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


Define a differential equation.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×