मराठी

Verify that Y = 4 Sin 3x is a Solution of the Differential Equation D 2 Y D X 2 + 9 Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]

बेरीज

उत्तर

We have, \[y = 4 \sin 3x...........(1)\]

Differentiating both sides of equation (1) with respect to x, we get \[\frac{dy}{dx} = 12 \cos3x...........(2)\]

Differentiating both sides of equation (2) with respect to x, we get

\[\frac{d^2 y}{d x^2} = - 36 \sin 3x\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = - 9\left( 4 \sin 3x \right)\]

\[ \Rightarrow \frac{d^2 y}{d x^2} = - 9y ...........\left[\text{ Using equation }\left( 1 \right) \right]\]

⇒ \[\frac{d^2 y}{d x^2} + 9y = 0\]

Hence, the given function is the solution to the given differential equation

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.03 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.03 | Q 2 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[x\frac{dy}{dx} + y = y^2\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[x\frac{dy}{dx} = x + y\]

(x + 2y) dx − (2x − y) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Define a differential equation.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve:

(x + y) dy = a2 dx


Solve

`dy/dx + 2/ x y = x^2`


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve: ydx – xdy = x2ydx.


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×