Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
पर्याय
`(d^2y)/dx^2 + 2 dy/dx = 0`
`x(d^2y)/dx^2 + 2 dy/dx = 0`
`(d^2y)/dx^2 -2 dy/dx = 0`
`x(d^2y)/dx^2 -2 dy/dx = 0`
उत्तर
The differential equation of `y = k_1 + k_2/x` is `x(d^2y)/dx^2 + 2 dy/dx = 0`
Explanation
`y = k_1 + k_2/x`
∴ xy = xk1 + k2
Differentiating w.r.t. x, we get
`y+x dy/dx = k_1`
Again, differentiating w.r.t. x, we get
`dy/dx + dy/dx + x (d^2y)/dx^2 = 0`
∴ `x (d^2y)/dx^2 + 2 dy/dx = 0`
APPEARS IN
संबंधित प्रश्न
xy (y + 1) dy = (x2 + 1) dx
2xy dx + (x2 + 2y2) dy = 0
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
y dx – x dy + log x dx = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.