Advertisements
Advertisements
प्रश्न
उत्तर
\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}\]
\[ \Rightarrow dy = \left( x^2 + x - \frac{1}{x} \right)dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\left( x^2 + x - \frac{1}{x} \right)dx\]
\[ \Rightarrow y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| + C\]
\[\text{ Clearly, } y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| +\text{ C is defined for all } x \in\text{ R except }x = 0 . \]
\[\text{ Hence, } y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| + C,\text{ where }x \in R- \left\{ 0 \right\}, \text{ is the solution to the given differential equation }.\]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y + xy) dx + (x − xy2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
(x + y) (dx − dy) = dx + dy
(x2 − y2) dx − 2xy dy = 0
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve the differential equation:
dr = a r dθ − θ dr
x2y dx – (x3 + y3) dy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0