मराठी

D Y D X = X 2 + X − 1 X , X ≠ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]
बेरीज

उत्तर

We have, 
\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}\]
\[ \Rightarrow dy = \left( x^2 + x - \frac{1}{x} \right)dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\left( x^2 + x - \frac{1}{x} \right)dx\]
\[ \Rightarrow y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| + C\]
\[\text{ Clearly, } y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| +\text{ C is defined for all } x \in\text{ R except }x = 0 . \]
\[\text{ Hence, } y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| + C,\text{ where }x \in R- \left\{ 0 \right\}, \text{ is the solution to the given differential equation }.\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 1 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = \log x\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


(y + xy) dx + (x − xy2) dy = 0


(y2 + 1) dx − (x2 + 1) dy = 0


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[x\frac{dy}{dx} = x + y\]

(x2 − y2) dx − 2xy dy = 0


3x2 dy = (3xy + y2) dx


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Solve the differential equation:

dr = a r dθ − θ dr


x2y dx – (x3 + y3) dy = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×