मराठी

D Y D X = Log X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \log x\]
बेरीज

उत्तर

We have,
\[\frac{dy}{dx} = \log x\]
\[ \Rightarrow dy = \left( \log x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \log x \right)dx\]

\[ \Rightarrow \int dy = \log x\int1 dx - \int\left[ \frac{d}{dx}\left( \log x \right)\int1 dx \right]dx\]
\[ \Rightarrow y = x\log x - \int\frac{x}{x}dx\]
\[ \Rightarrow y = x\log x - \int1dx\]
\[ \Rightarrow y = x\log x - x\]
\[ \Rightarrow y = x\left( \log x - 1 \right) + C\]
\[ \Rightarrow y = x\left( \log x - 1 \right) + C\]
\[\text{ So, } y = x\left( \log x - 1 \right) +\text{ C is defined for all }x \in R\text{ except }x = 0.\]
\[\text{ Hence, } y = x\left( \log x - 1 \right) +\text{ C, where } x \in R - \left\{ 0 \right\},\text{ is the solution to the given differential equation.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 8 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\sin^4 x\frac{dy}{dx} = \cos x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

(x2 − y2) dx − 2xy dy = 0


\[xy\frac{dy}{dx} = x^2 - y^2\]

(x + 2y) dx − (2x − y) dy = 0


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


The solution of `dy/dx + x^2/y^2 = 0` is ______


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×