मराठी

1 X D Y D X = Tan − 1 X , X ≠ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]
बेरीज

उत्तर

We have,
\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x\]
\[\Rightarrow \frac{dy}{dx} = x \tan^{- 1} x\]
\[ \Rightarrow dy = \left( x \tan^{- 1} x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( x \tan^{- 1} x \right)dx\]

\[ \Rightarrow \int dy = \tan^{- 1} x\int x dx - \int\left[ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x dx \right]dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\frac{x^2}{1 + x^2}dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\frac{x^2 + 1 - 1}{1 + x^2}dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\left( 1 - \frac{1}{1 + x^2} \right)dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}x + \frac{\tan^{- 1} x}{2} + C\]
\[ \Rightarrow y = \frac{\left( x^2 + 1 \right) \tan^{- 1} x}{2} - \frac{1}{2}x + C\]
\[\text{ Hence, }y = \frac{\left( x^2 + 1 \right) \tan^{- 1} x}{2} - \frac{1}{2}x +\text{C is the solution to the given differential equation.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.05 | Q 9 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Form the differential equation from the relation x2 + 4y2 = 4b2


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve: ydx – xdy = x2ydx.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×