Advertisements
Advertisements
प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
उत्तर
The equation of the family of parabolas with latus rectum \[4a\] and axis parallel to the x-axis is given by
\[\left( y - \beta \right)^2 = 4a\left( x - \alpha \right)..............(1)\]
where \[\alpha\text{ and }\beta\] are two arbitrary constants.
As this equation has two arbitrary constants, we shall get second order differential equation.
Differentiating equation (1) with respect to x, we get
Differentiating equation (2) with respect to x, we get
Now, from equation (2), we get
From (3) and (4), we get
\[\frac{2a}{\frac{dy}{dx}}\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 0\]
\[ \Rightarrow 2a\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^3 = 0 \]
It is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(1 − x2) dy + xy dx = xy2 dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
y (1 + ex) dy = (y + 1) ex dx
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the differential equation:
dr = a r dθ − θ dr
y2 dx + (xy + x2)dy = 0
`dy/dx = log x`
Solve the following differential equation y2dx + (xy + x2) dy = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is