Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
`(x + y) dy/dx = 1`
उत्तर
`(x + y) dy/dx = 1`
∴ `dy/dx = 1/(x + y)`
∴ `dx/dy = x + y`
∴ `dx/dy − x = y`
∴ `dx/dy + (− 1)x = y` ...(I)
The given equation is of the form `dx/dy + Px = Q`
where, P = − 1 and Q = y
∴ `"I.F." = e int ^"pdy" = e int ^("(−1)dy") = e^-"y"`
∴ Solution of the given equation is
`"x (I.F.)" = int "Q (I.F.) dy" + C`
∴ `"xe"^(−"y") = ubrace(int y.e^(−y))_(("I")) dy + C` ...(II)
Let I = `int y. e^(−y) dy`
Using Integration by parts,
I = `y int e^(−y) dy - int [ d/dy y int e^(−y) dy] dy`
I = `y (e^(−y))/(-1) − int 1. (e^(−y))/(-1) dy`
I = `− y. e^(−y) + int e^(−y) dy`
I = `− y. e^(−y) + e^(−y)/(- 1) dy`
I = `− y. e^(−y) − e^(−y)`
Putting value of I in (2),
∴ `"xe"^(−"y") = int y.e^(−y) dy + C`
∴ `"xe"^(−"y") = − y. e^(−y) − e^(−y) + C`
Dividing by e−y,
∴ x = − y − 1 + Cey
∴ x + y + 1 = Cey
APPEARS IN
संबंधित प्रश्न
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
2xy dx + (x2 + 2y2) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve the differential equation
`y (dy)/(dx) + x` = 0