मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following differential equation. (x+y)dydx=1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

`(x + y) dy/dx = 1`

बेरीज

उत्तर

`(x + y) dy/dx = 1`

∴ `dy/dx = 1/(x + y)`

∴ `dx/dy = x + y`

∴ `dx/dy − x = y`

∴ `dx/dy + (− 1)x = y`                 ...(I)

The given equation is of the form `dx/dy + Px = Q`

where, P = − 1 and Q = y

∴ `"I.F." = e int ^"pdy" = e int ^("(−1)dy") = e^-"y"`

∴ Solution of the given equation is

`"x (I.F.)" = int "Q (I.F.) dy" + C`

∴ `"xe"^(−"y") = ubrace(int y.e^(−y))_(("I"))   dy + C`        ...(II)

Let I = `int y. e^(−y)  dy`

Using Integration by parts,

I = `y int e^(−y) dy - int [ d/dy y int e^(−y)  dy] dy`

I =  `y (e^(−y))/(-1) − int 1. (e^(−y))/(-1)  dy`

I = `− y. e^(−y) + int e^(−y)  dy`

I = `− y. e^(−y) + e^(−y)/(- 1)  dy`

I = `− y. e^(−y) − e^(−y)`

Putting value of I in (2),

∴ `"xe"^(−"y") = int y.e^(−y)   dy + C`

∴ `"xe"^(−"y") = − y. e^(−y) − e^(−y)  + C`

Dividing by e−y,

∴ x = − y − 1 + Cey

∴  x + y + 1 = Cey

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.5 [पृष्ठ १६८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.5 | Q 1.4 | पृष्ठ १६८

संबंधित प्रश्‍न

Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[x\frac{dy}{dx} + y = y^2\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

2xy dx + (x2 + 2y2) dy = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation

`y (dy)/(dx) + x` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×