Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]
\[ \Rightarrow \frac{dy}{dx} = \cos 2x \cos^2 y\]
\[ \Rightarrow \frac{1}{\cos^2 y}dy = \cos 2x dx\]
\[ \Rightarrow \sec^2 y dy = \cos 2x dx\]
Integrating both sides, we get
\[\int \sec^2 y dy = \int\cos 2x dx\]
\[ \Rightarrow \tan y = \frac{\sin 2x}{2} + C\]
\[\text{ Hence, }\tan y = \frac{\sin 2x}{2} +\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
x cos2 y dx = y cos2 x dy
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
y ex/y dx = (xex/y + y) dy
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`dy/dx + 2xy = x`
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
`xy dy/dx = x^2 + 2y^2`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.
Solve: ydx – xdy = x2ydx.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.