हिंदी

D Y D X = ( Cos 2 X − Sin 2 X ) Cos 2 Y - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

उत्तर

We have,
\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]
\[ \Rightarrow \frac{dy}{dx} = \cos 2x \cos^2 y\]
\[ \Rightarrow \frac{1}{\cos^2 y}dy = \cos 2x dx\]
\[ \Rightarrow \sec^2 y dy = \cos 2x dx\]
Integrating both sides, we get
\[\int \sec^2 y dy = \int\cos 2x dx\]
\[ \Rightarrow \tan y = \frac{\sin 2x}{2} + C\]
\[\text{ Hence, }\tan y = \frac{\sin 2x}{2} +\text{ C is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 36 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[x\frac{dy}{dx} + y = y^2\]

(ey + 1) cos x dx + ey sin x dy = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[xy\frac{dy}{dx} = x^2 - y^2\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


 `dy/dx = log x`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the differential equation xdx + 2ydy = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×