Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]
\[ \Rightarrow \frac{dy}{dx} = \cos 2x \cos^2 y\]
\[ \Rightarrow \frac{1}{\cos^2 y}dy = \cos 2x dx\]
\[ \Rightarrow \sec^2 y dy = \cos 2x dx\]
Integrating both sides, we get
\[\int \sec^2 y dy = \int\cos 2x dx\]
\[ \Rightarrow \tan y = \frac{\sin 2x}{2} + C\]
\[\text{ Hence, }\tan y = \frac{\sin 2x}{2} +\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
(sin x + cos x) dy + (cos x − sin x) dx = 0
(ey + 1) cos x dx + ey sin x dy = 0
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation xdx + 2ydy = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve the following differential equation y log y = `(log y - x) ("d"y)/("d"x)`
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to: