Advertisements
Advertisements
प्रश्न
(sin x + cos x) dy + (cos x − sin x) dx = 0
उत्तर
We have,
\[\left( \sin x + \cos x \right)dy + \left( \cos x - \sin x \right)dx = 0\]
\[ \Rightarrow dy = - \left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
Integrating both sides, we get
\[\int dy = - \int\left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow y = - \int\left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
\[\text{ Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore y = - \int\frac{dt}{t}\]
\[ \Rightarrow y = - \log\left| t \right| + C\]
\[ \Rightarrow y = - \log\left| \sin x + \cos x \right| + C\]
\[ \Rightarrow y + \log\left| \sin x + \cos x \right| = C\]
\[\text{ Hence, }y + \log\left| \sin x + \cos x \right| =\text{ C is the solution to the given differential equation }.\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
(1 − x2) dy + xy dx = xy2 dx
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
3x2 dy = (3xy + y2) dx
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Define a differential equation.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Form the differential equation from the relation x2 + 4y2 = 4b2
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`dy/dx + 2xy = x`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve:
(x + y) dy = a2 dx
x2y dx – (x3 + y3) dy = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Solve the differential equation
`y (dy)/(dx) + x` = 0
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.