English

(Sin X + Cos X) Dy + (Cos X − Sin X) Dx = 0 - Mathematics

Advertisements
Advertisements

Question

(sin x + cos x) dy + (cos x − sin x) dx = 0

Solution

We have, 
\[\left( \sin x + \cos x \right)dy + \left( \cos x - \sin x \right)dx = 0\]
\[ \Rightarrow dy = - \left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
Integrating both sides, we get
\[\int dy = - \int\left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
\[ \Rightarrow y = - \int\left( \frac{\cos x - \sin x}{\sin x + \cos x} \right)dx\]
\[\text{ Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore y = - \int\frac{dt}{t}\]
\[ \Rightarrow y = - \log\left| t \right| + C\]
\[ \Rightarrow y = - \log\left| \sin x + \cos x \right| + C\]
\[ \Rightarrow y + \log\left| \sin x + \cos x \right| = C\]
\[\text{ Hence, }y + \log\left| \sin x + \cos x \right| =\text{ C is the solution to the given differential equation }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.05 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.05 | Q 11 | Page 34

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Solve the equation for x: `sin^(-1)  5/x + sin^(-1)  12/x = pi/2, x != 0`


\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


\[\frac{dy}{dx} = \tan^{- 1} x\]


xy (y + 1) dy = (x2 + 1) dx


Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + 2xy = x`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Solve the differential equation:

dr = a r dθ − θ dr


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×