English

Cos X Cos Y D Y D X = − Sin X Sin Y - Mathematics

Advertisements
Advertisements

Question

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]
Sum

Solution

We have,
\[\cos x \cos y \frac{dy}{dx} = - \sin x \sin y \]
\[ \Rightarrow \frac{\cos y}{\sin y}dy = \frac{- \sin x}{\cos x}dx\]
\[ \Rightarrow \cot y\ dy = - \tan x\ dx\]
Integrating both sides, we get 
\[\int \cot y\ dy = - \int\tan x\ dx\]
\[ \Rightarrow \log \left| \sin y \right| = - \log \left| \sec x \right| + \log C\]
\[ \Rightarrow \log \left| \sin y \right| = \log \left| \cos x \right| + \log C\]
\[ \Rightarrow \sin y = C \cos x\]
\[\text{ Hence, }\sin y = C \cos x\text{ is the required solution . }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 25 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

(1 − x2) dy + xy dx = xy2 dx


\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\frac{dy}{dx} + 1 = e^{x + y}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`dy/dx + 2xy = x`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve the differential equation:

`e^(dy/dx) = x`


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve: ydx – xdy = x2ydx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×