Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\cos x \cos y \frac{dy}{dx} = - \sin x \sin y \]
\[ \Rightarrow \frac{\cos y}{\sin y}dy = \frac{- \sin x}{\cos x}dx\]
\[ \Rightarrow \cot y\ dy = - \tan x\ dx\]
Integrating both sides, we get
\[\int \cot y\ dy = - \int\tan x\ dx\]
\[ \Rightarrow \log \left| \sin y \right| = - \log \left| \sec x \right| + \log C\]
\[ \Rightarrow \log \left| \sin y \right| = \log \left| \cos x \right| + \log C\]
\[ \Rightarrow \sin y = C \cos x\]
\[\text{ Hence, }\sin y = C \cos x\text{ is the required solution . }\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x: `sin^(-1) 5/x + sin^(-1) 12/x = pi/2, x != 0`
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
x cos y dy = (xex log x + ex) dx
x cos2 y dx = y cos2 x dy
tan y dx + sec2 y tan x dy = 0
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Form the differential equation from the relation x2 + 4y2 = 4b2
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy - x log x = 0`,
when x=e, y = e2.
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.