Advertisements
Advertisements
प्रश्न
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
उत्तर
We have,
\[\left( 1 + x \right)\left( 1 + y^2 \right) dx + \left( 1 + y \right)\left( 1 + x^2 \right)dy = 0\]
\[ \Rightarrow \left( 1 + x \right)\left( 1 + y^2 \right) dx = - \left( 1 + y \right)\left( 1 + x^2 \right)dy\]
\[ \Rightarrow \frac{1 + x}{1 + x^2}dx = - \frac{1 + y}{1 + y^2}dy\]
Integarting both sides, we get
\[\int\frac{1 + x}{1 + x^2}dx = - \int\frac{1 + y}{1 + y^2}dy\]
\[ \Rightarrow \int\frac{1}{1 + x^2}dx + \int\frac{x}{1 + x^2}dx = - \int\frac{1}{1 + y^2}dy - \int\frac{y}{1 + y^2}dy\]
\[\text{ Substituting }1 + x^2 = t \text{ in the second integral of LHS and }1 + y^2 = u\text{ in the second integral of RHS, we get }\]
\[2x dx = dt\text{ and }2ydy = du\]
\[ \therefore \int\frac{1}{1 + x^2}dx + \frac{1}{2}\int\frac{1}{t}dt = - \int\frac{1}{1 + y^2}dy - \frac{1}{2}\int\frac{1}{u}du\]
\[ \Rightarrow \tan^{- 1} x + \frac{1}{2}\log \left| t \right| = - \tan^{- 1} y - \frac{1}{2}\log \left| u \right| + C\]
\[ \Rightarrow \tan^{- 1} x + \frac{1}{2}\log \left| 1 + x^2 \right| = - \tan^{- 1} y - \frac{1}{2}\log \left| 1 + y^2 \right| + C\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| 1 + x^2 \right| + \frac{1}{2}\log \left| 1 + y^2 \right| = C\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| \left( 1 + x^2 \right)\left( 1 + y^2 \right) \right| = C\]
\[\text{ Hence, }\tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| \left( 1 + x^2 \right)\left( 1 + y^2 \right) \right| =\text{ C is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
x cos y dy = (xex log x + ex) dx
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve the differential equation:
dr = a r dθ − θ dr
Solve the differential equation xdx + 2ydy = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to:
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.