हिंदी

(1 + X) (1 + Y2) Dx + (1 + Y) (1 + X2) Dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0

उत्तर

We have, 
\[\left( 1 + x \right)\left( 1 + y^2 \right) dx + \left( 1 + y \right)\left( 1 + x^2 \right)dy = 0\]
\[ \Rightarrow \left( 1 + x \right)\left( 1 + y^2 \right) dx = - \left( 1 + y \right)\left( 1 + x^2 \right)dy\]
\[ \Rightarrow \frac{1 + x}{1 + x^2}dx = - \frac{1 + y}{1 + y^2}dy\]
Integarting both sides, we get
\[\int\frac{1 + x}{1 + x^2}dx = - \int\frac{1 + y}{1 + y^2}dy\]
\[ \Rightarrow \int\frac{1}{1 + x^2}dx + \int\frac{x}{1 + x^2}dx = - \int\frac{1}{1 + y^2}dy - \int\frac{y}{1 + y^2}dy\]
\[\text{ Substituting }1 + x^2 = t \text{ in the second integral of LHS and }1 + y^2 = u\text{ in the second integral of RHS, we get }\]
\[2x dx = dt\text{ and }2ydy = du\]
\[ \therefore \int\frac{1}{1 + x^2}dx + \frac{1}{2}\int\frac{1}{t}dt = - \int\frac{1}{1 + y^2}dy - \frac{1}{2}\int\frac{1}{u}du\]
\[ \Rightarrow \tan^{- 1} x + \frac{1}{2}\log \left| t \right| = - \tan^{- 1} y - \frac{1}{2}\log \left| u \right| + C\]
\[ \Rightarrow \tan^{- 1} x + \frac{1}{2}\log \left| 1 + x^2 \right| = - \tan^{- 1} y - \frac{1}{2}\log \left| 1 + y^2 \right| + C\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| 1 + x^2 \right| + \frac{1}{2}\log \left| 1 + y^2 \right| = C\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| \left( 1 + x^2 \right)\left( 1 + y^2 \right) \right| = C\]
\[\text{ Hence, }\tan^{- 1} x + \tan^{- 1} y + \frac{1}{2}\log \left| \left( 1 + x^2 \right)\left( 1 + y^2 \right) \right| =\text{ C is the required solution }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 23 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = \sin^2 y\]

x cos y dy = (xex log x + ex) dx


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \frac{y - x}{y + x}\]

\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


Which of the following transformations reduce the differential equation \[\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2\] into the form \[\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)\]


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation:

dr = a r dθ − θ dr


Solve the differential equation xdx + 2ydy = 0


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×