Advertisements
Advertisements
प्रश्न
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
विकल्प
`(d^2y)/dx^2 + 2 dy/dx = 0`
`x(d^2y)/dx^2 + 2 dy/dx = 0`
`(d^2y)/dx^2 -2 dy/dx = 0`
`x(d^2y)/dx^2 -2 dy/dx = 0`
उत्तर
The differential equation of `y = k_1 + k_2/x` is `x(d^2y)/dx^2 + 2 dy/dx = 0`
Explanation
`y = k_1 + k_2/x`
∴ xy = xk1 + k2
Differentiating w.r.t. x, we get
`y+x dy/dx = k_1`
Again, differentiating w.r.t. x, we get
`dy/dx + dy/dx + x (d^2y)/dx^2 = 0`
∴ `x (d^2y)/dx^2 + 2 dy/dx = 0`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that y = AeBx is a solution of the differential equation
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y + xy) dx + (x − xy2) dy = 0
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
x2 dy + y (x + y) dx = 0
The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]