हिंदी

Choose the correct alternative. The differential equation of y = k1+k2x is - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is

विकल्प

  • `(d^2y)/dx^2 + 2 dy/dx = 0`

  • `x(d^2y)/dx^2 + 2 dy/dx = 0`

  • `(d^2y)/dx^2 -2 dy/dx = 0`

  • `x(d^2y)/dx^2 -2 dy/dx = 0`

MCQ

उत्तर

The differential equation of `y = k_1 + k_2/x` is `x(d^2y)/dx^2 + 2 dy/dx = 0`

Explanation

`y = k_1 + k_2/x`

∴ xy = xk1 + k2

Differentiating w.r.t. x, we get

`y+x dy/dx = k_1`

Again, differentiating w.r.t. x, we get

`dy/dx + dy/dx + x (d^2y)/dx^2 = 0`

∴ `x (d^2y)/dx^2 + 2 dy/dx = 0`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 1.03 | पृष्ठ १७१

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

(y + xy) dx + (x − xy2) dy = 0


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

x2 dy + y (x + y) dx = 0


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×