Advertisements
Advertisements
प्रश्न
x2 dy + y (x + y) dx = 0
उत्तर
We have,
\[ x^2 dy + y\left( x + y \right) dx = 0\]
\[ \Rightarrow x^2 dy = - y\left( x + y \right) dx\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- y\left( x + y \right)}{x^2}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{- vx\left( x + vx \right)}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = - v\left( 1 + v \right)\]
\[ \Rightarrow x\frac{dv}{dx} = - v - v - v^2 \]
\[ \Rightarrow x\frac{dv}{dx} = - \left( v^2 + 2v \right)\]
\[ \Rightarrow \frac{dv}{\left( v^2 + 2v \right)} = - \frac{dx}{x}\]
\[ \Rightarrow \frac{dv}{v\left( v + 2 \right)} = - \frac{dx}{x}\]
Integrating both sides, we get
\[\int\frac{dv}{v\left( v + 2 \right)} = - \int\frac{dx}{x}\]
\[ \Rightarrow \frac{1}{2}\int\left[ \frac{1}{v} - \frac{1}{v + 2} \right]dv = - \int\frac{dx}{x}\]
\[ \Rightarrow \frac{1}{2}\left[ \int\frac{1}{v}dv - \int\frac{1}{v + 2}dv \right] = - \int\frac{dx}{x}\]
\[ \Rightarrow \frac{1}{2}\left[ \log \left| v \right| - \log \left| v + 2 \right| \right] = - \log \left| x \right| + \log C\]
\[ \Rightarrow \frac{1}{2}\log \left| \frac{v}{v + 2} \right| = \log \left| \frac{C}{x} \right| \]
\[ \Rightarrow \log \left| \frac{v}{v + 2} \right| = 2\log \left| \frac{C}{x} \right|\]
\[ \Rightarrow \log \left| \frac{v}{v + 2} \right| = \log \left| \frac{C^2}{x^2} \right|\]
\[ \Rightarrow \frac{v}{v + 2} = \frac{C^2}{x^2}\]
\[ \Rightarrow \frac{\frac{y}{x}}{\frac{y}{x} + 2} = \frac{C^2}{x^2}\]
\[ \Rightarrow \frac{y}{y + 2x} = \frac{C^2}{x^2}\]
\[ \Rightarrow x^2 y = C^2 \left( y + 2x \right)\]
\[ \Rightarrow x^2 y = K\left( y + 2x \right) ..........\left(\text{Where, }K = C^2 \right)\]
APPEARS IN
संबंधित प्रश्न
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
x cos2 y dx = y cos2 x dy
xy dy = (y − 1) (x + 1) dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Which of the following differential equations has y = C1 ex + C2 e−x as the general solution?
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Solve the differential equation:
dr = a r dθ − θ dr
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
Solve the differential equation
`y (dy)/(dx) + x` = 0