हिंदी

Solve: dddydx=cos(x+y)+sin(x+y). [Hint: Substitute x + y = z] - Mathematics

Advertisements
Advertisements

प्रश्न

Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]

योग

उत्तर

Given that: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`

Put x + y = v, on differentiating w.r.t. x, we get,

`1 + ("d"y)/("d"x) = "dv"/"dx"`

∴ `("d"y)/("d"x) = "dv"/"dx" - 1`

∴ `"dv"/"dx" - 1` = cos v + sin v

⇒ `"dv"/"dx"` = cos v + sin v + 1

⇒ `"dv"/(cos"v" + sin"v" + 1)` = dx

Integrating both sides, we have

`int "dv"/(cos"v" + sin"v" + 1) = int 1 . "d"x`

⇒ `int  "dv"/(((1 - tan^2  "v"/2)/(1 + tan^2  "v"/2) + (2tan  "v"/2)/(1 + tan^2  "v"/2) + 1)) = int 1. "d"x`

⇒ `int ((1 + tan^2  "v"/2))/(1 - tan^2  "v"/2 + 2 tan  "v"/2 + 1 + tan^2  "v"/2) "dv" = int 1."d"x`

⇒ `int (sec^2  "v"/2)/(2 + 2 tan  "v"/2) "dv" = int 1."d"x`

Put `2 + 2 tan  "v"/2` = t

`2 * 1/2 sec^2  "v"/2 "dv"` = dt

⇒ `sec^2  "v"/2 "dv"` = dt

⇒ `int "dt"/"t" = int 1."d"x`

⇒ `log|"t"|` = x + c

⇒ `log|2 + 2 tan  "v"/2|` = x + c

⇒ `log|2 + 2tan((x + y)/2)| ` = x + c

⇒ `log2 [1 + tan((x + y)/2)]` = x + c

⇒ `log2 + log[1 + tan ((x + y)/2)]` = x + c

⇒ `log[1 + tan((x + y)/2)]` = x + c – log 2

Hence, the required solution is `log[1 + tan((x + y)/2)]` = x + K  ....[c – log 2 = K]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 27 | पृष्ठ १९४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


x cos y dy = (xex log x + ex) dx


y (1 + ex) dy = (y + 1) ex dx


dy + (x + 1) (y + 1) dx = 0


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


2xy dx + (x2 + 2y2) dy = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Solve the differential equation

`y (dy)/(dx) + x` = 0


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×