Advertisements
Advertisements
प्रश्न
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
उत्तर
Given that: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`
Put x + y = v, on differentiating w.r.t. x, we get,
`1 + ("d"y)/("d"x) = "dv"/"dx"`
∴ `("d"y)/("d"x) = "dv"/"dx" - 1`
∴ `"dv"/"dx" - 1` = cos v + sin v
⇒ `"dv"/"dx"` = cos v + sin v + 1
⇒ `"dv"/(cos"v" + sin"v" + 1)` = dx
Integrating both sides, we have
`int "dv"/(cos"v" + sin"v" + 1) = int 1 . "d"x`
⇒ `int "dv"/(((1 - tan^2 "v"/2)/(1 + tan^2 "v"/2) + (2tan "v"/2)/(1 + tan^2 "v"/2) + 1)) = int 1. "d"x`
⇒ `int ((1 + tan^2 "v"/2))/(1 - tan^2 "v"/2 + 2 tan "v"/2 + 1 + tan^2 "v"/2) "dv" = int 1."d"x`
⇒ `int (sec^2 "v"/2)/(2 + 2 tan "v"/2) "dv" = int 1."d"x`
Put `2 + 2 tan "v"/2` = t
`2 * 1/2 sec^2 "v"/2 "dv"` = dt
⇒ `sec^2 "v"/2 "dv"` = dt
⇒ `int "dt"/"t" = int 1."d"x`
⇒ `log|"t"|` = x + c
⇒ `log|2 + 2 tan "v"/2|` = x + c
⇒ `log|2 + 2tan((x + y)/2)| ` = x + c
⇒ `log2 [1 + tan((x + y)/2)]` = x + c
⇒ `log2 + log[1 + tan ((x + y)/2)]` = x + c
⇒ `log[1 + tan((x + y)/2)]` = x + c – log 2
Hence, the required solution is `log[1 + tan((x + y)/2)]` = x + K ....[c – log 2 = K]
APPEARS IN
संबंधित प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
x cos y dy = (xex log x + ex) dx
y (1 + ex) dy = (y + 1) ex dx
dy + (x + 1) (y + 1) dx = 0
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
2xy dx + (x2 + 2y2) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Solve the differential equation
`y (dy)/(dx) + x` = 0
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.