हिंदी

Verify that Y = Log ( X + √ X 2 + a 2 ) 2 Satisfies the Differential Equation ( a 2 + X 2 ) D 2 Y D X 2 + X D Y D X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]

योग

उत्तर

We have,
\[y = \log \left( x + \sqrt{x^2 + a^2} \right)^2............(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = \frac{d}{dx}\left[ \log \left( x + \sqrt{x^2 + a^2} \right)^2 \right]\]
\[ = \frac{d}{dx}\left[ 2 \log \left( x + \sqrt{x^2 + a^2} \right) \right]\]
\[ = 2\frac{1 + \frac{1}{2}\frac{2x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}\]
\[ = 2\frac{\frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}\]
\[ = \frac{2}{\sqrt{x^2 + a^2}} ............(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = 2\left( - \frac{1}{2} \right)\frac{2x}{\left( x^2 + a^2 \right)\sqrt{x^2 + a^2}}\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} = - \frac{2x}{\sqrt{x^2 + a^2}}\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} = - x\frac{dy}{dx} ...........\left[\text{Using (2)} \right]\]
\[ \Rightarrow \left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.03 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.03 | Q 18 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\sqrt{1 - x^4} dy = x\ dx\]

x cos y dy = (xex log x + ex) dx


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

(x + y) (dx − dy) = dx + dy


Solve the following initial value problem:-

\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


Define a differential equation.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation y1 y3 = y22 is


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Choose the correct alternative.

Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in


Solve the differential equation:

dr = a r dθ − θ dr


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×