Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]
\[ \Rightarrow \frac{1}{y}dy = \frac{2 x^3}{x - 1}dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\frac{2 x^3}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\frac{x^3 - 1 + 1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\frac{x^3 - 1}{x - 1}dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\frac{\left( x - 1 \right)\left( x^2 + x + 1 \right)}{x - 1}dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\left( x^2 + x + 1 \right) dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2 \left[ \frac{x^3}{3} + \frac{x^2}{2} + x + \log \left| x - 1 \right| \right] + C\]
\[ \Rightarrow \log \left| y \right| = \frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right|^2 + C\]
\[ \Rightarrow y = e^{\frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right|^2 + C}\]
\[ \Rightarrow y = e^C \times e^{{log} \left| x - 1 \right|^2} \times e^{\frac{2}{3} x^3 + x^2 + 2x}\]
\[ \Rightarrow y = C_1 \left| x - 1 \right|^2 e^{\frac{2}{3} x^3 + x^2 + 2x} ..........\left[ \because e^{ln\ x} = x\text{ and where, }C_1 = e^C \right]\]
\[ \therefore y = C_1 \left| x - 1 \right|^2 e^{\frac{2}{3} x^3 + x^2 + 2x} \text{ is required solution.} \]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
x cos2 y dx = y cos2 x dy
(y2 + 1) dx − (x2 + 1) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
Solve the differential equation
`y (dy)/(dx) + x` = 0