हिंदी

D Y D X = E X + Y + E − X + Y - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]
योग

उत्तर

We have, 
\[\frac{dy}{dx} = e^{x + y} + e^{- x + y} \]
\[ \Rightarrow \frac{dy}{dx} = e^y \left( e^x + e^{- x} \right)\]
\[ \Rightarrow e^{- y} dy = \left( e^x + e^{- x} \right) dx\]
Integrating both sides, we get
\[\int e^{- y} dy = \int\left( e^x + e^{- x} \right) dx\]
\[ \Rightarrow - e^{- y} = e^x - e^{- x} + C\]
\[ \Rightarrow e^{- x} - e^{- y} = e^x + C\]
\[\text{ Hence, } e^{- x} - e^{- y} = e^x + C\text{ is the required solution.} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 35 | पृष्ठ ५५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[5\frac{dy}{dx} = e^x y^4\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

(x2 − y2) dx − 2xy dy = 0


\[2xy\frac{dy}{dx} = x^2 + y^2\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the differential equation xdx + 2ydy = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Solve: ydx – xdy = x2ydx.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×