हिंदी

D Y D X = 1 + X + Y 2 + X Y 2 When Y = 0, X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0
योग

उत्तर

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\]
\[\Rightarrow \frac{dy}{dx} = 1 + x + y^2 \left( 1 + x \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + x \right)\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{\left( 1 + y^2 \right)} = \left( 1 + x \right)dx\]
\[ \Rightarrow \int\frac{dy}{\left( 1 + y^2 \right)} = \int\left( 1 + x \right)dx\]
\[ \Rightarrow \tan^{- 1} y = x + \frac{x^2}{2} + C . . . . . \left( 1 \right)\]
\[\text{ Now, } \tan^{- 1} 0 = 0 + 0 + C ..........\left[\because y = 0, x = 0 \right]\]
\[ \Rightarrow C = 0\]
Substituting the value of C in (1), we get
\[ \tan^{- 1} y = x + \frac{x^2}{2}\]
\[ \Rightarrow y = \tan\left( x + \frac{x^2}{2} \right)\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 45.8 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

(ey + 1) cos x dx + ey sin x dy = 0


x cos2 y  dx = y cos2 x dy


\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

(x2 − y2) dx − 2xy dy = 0


y ex/y dx = (xex/y + y) dy


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

`(x + y) dy/dx = 1`


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve

`dy/dx + 2/ x y = x^2`


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the differential equation xdx + 2ydy = 0


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


The function y = ex is solution  ______ of differential equation


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×