Advertisements
Advertisements
प्रश्न
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
उत्तर
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
∴ `("d"y)/("d"x) = 1 + y/x - (y/x)^2` .....(i)
Put `y/x` = t .....(ii)
∴ y = tx
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "t" + x ("dt")/("d"x)` .....(iii)
Substituting (ii) and (iii) in (i), we get
`"t" + x "dt"/("d"x)` = 1 + t − t2
∴ `x "dt"/("d"x)` = 1 − t2
∴ `"dt"/(1 - "t"^2) = ("d"x)/x`
Integrating on both sides, we get
`int "dt"/(1 - "t"^2) = int ("d"x)/x`
∴ `1/2 log|(1 + t)/(1 - t)|` = log |x| + log |c1|
∴ `log |(1 + y/x)/(1 - y/x)|` = 2log |x| + 2log |c1|
∴ `log|(x + y)/(x - y)|` = log |x2| + log |c12|
∴ `log|(x + y)/(x - y)|` = log |c1x2|
∴ `(x + y)/(x - y)` = c12x2
∴ `(x + y)/(x - y)` = cx2, where c = c12
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Verify that y = cx + 2c2 is a solution of the differential equation
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
C' (x) = 2 + 0.15 x ; C(0) = 100
(1 − x2) dy + xy dx = xy2 dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
x2 dy + y (x + y) dx = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
2xy dx + (x2 + 2y2) dy = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is
Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`(x + y) dy/dx = 1`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Solve the differential equation:
`e^(dy/dx) = x`
x2y dx – (x3 + y3) dy = 0
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation xdx + 2ydy = 0
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
Solve: ydx – xdy = x2ydx.
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation
`x + y dy/dx` = x2 + y2