Advertisements
Advertisements
प्रश्न
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
उत्तर
We have, \[y^2 = 4ax ...........(1)\]
Differentiating both sides of (1) with respect to x, we get
\[2y\frac{dy}{dx} = 4a\]
⇒ \[\frac{dy}{dx} = \frac{2a}{y} ...........(2)\]
Now, differentiating both sides of (1) with respect to y, we get
\[2y = 4a\frac{dx}{dy}\]
⇒ \[\frac{dx}{dy} = \frac{y}{2a}..............(3)\]
\[\therefore x\frac{dy}{dx} + a\frac{dx}{dy} = x\left( \frac{2a}{y} \right) + a\left( \frac{y}{2a} \right) ..........\left[\text{Using (2) and (3)}\right]\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{2ax}{y} + \frac{y}{2}\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{y^2}{2y} + \frac{y}{2} ..........\left[\text{Using (1)}\right]\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{y}{2} + \frac{y}{2}\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = y\]
\[\Rightarrow y = x\frac{dy}{dx} + a\frac{dx}{dy}\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
xy (y + 1) dy = (x2 + 1) dx
tan y dx + sec2 y tan x dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
(x2 − y2) dx − 2xy dy = 0
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
`xy dy/dx = x^2 + 2y^2`
`dy/dx = log x`
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx