English

Verify that Y2 = 4ax is a Solution of the Differential Equation Y = X D Y D X + a D X D Y - Mathematics

Advertisements
Advertisements

Question

Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]

Sum

Solution

We have, \[y^2 = 4ax ...........(1)\]

Differentiating both sides of (1) with respect to x, we get
\[2y\frac{dy}{dx} = 4a\]
⇒ \[\frac{dy}{dx} = \frac{2a}{y}  ...........(2)\]

Now, differentiating both sides of (1) with respect to y, we get
\[2y = 4a\frac{dx}{dy}\]
⇒ \[\frac{dx}{dy} = \frac{y}{2a}..............(3)\]

\[\therefore x\frac{dy}{dx} + a\frac{dx}{dy} = x\left( \frac{2a}{y} \right) + a\left( \frac{y}{2a} \right) ..........\left[\text{Using  (2) and (3)}\right]\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{2ax}{y} + \frac{y}{2}\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{y^2}{2y} + \frac{y}{2} ..........\left[\text{Using (1)}\right]\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = \frac{y}{2} + \frac{y}{2}\]
\[ \Rightarrow x\frac{dy}{dx} + a\frac{dx}{dy} = y\]
\[\Rightarrow y = x\frac{dy}{dx} + a\frac{dx}{dy}\]

Hence, the given function is the solution to the given differential equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.03 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.03 | Q 8 | Page 25

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[x\frac{dy}{dx} + \cot y = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

(y2 − 2xy) dx = (x2 − 2xy) dy


\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


`xy dy/dx  = x^2 + 2y^2`


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×