Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]
\[ \Rightarrow \left( x - 1 \right)dy = 2xy dx\]
\[ \Rightarrow \frac{2x}{\left( x - 1 \right)}dx = \frac{1}{y}dy\]
Integrating both sides, we get
\[2\int\frac{x}{\left( x - 1 \right)}dx = \int\frac{1}{y}dy\]
\[ \Rightarrow 2\int\frac{x - 1 + 1}{x - 1}dx = \int\frac{1}{y}dy\]
\[ \Rightarrow 2\int dx + 2\int\frac{1}{x - 1}dx = \int\frac{1}{y}dy\]
\[ \Rightarrow 2x + 2 \log\left| x - 1 \right| = \log\left| y \right| + C\]
APPEARS IN
संबंधित प्रश्न
Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(sin x + cos x) dy + (cos x − sin x) dx = 0
xy (y + 1) dy = (x2 + 1) dx
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
`dy/dx + y = e ^-x`
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
x2y dx – (x3 + y3) dy = 0
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation xdx + 2ydy = 0
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Solve the differential equation
`x + y dy/dx` = x2 + y2