Advertisements
Advertisements
प्रश्न
उत्तर
\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y - x \cos^2 \left( \frac{y}{x} \right)}{x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \cos^2 \left( \frac{y}{x} \right)\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = v - \cos^2 v\]
\[ \Rightarrow x\frac{dv}{dx} = - \cos^2 v\]
\[ \Rightarrow \frac{1}{\cos^2 v}dv = - \frac{1}{x}dx\]
\[ \Rightarrow \sec^2 v = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int \sec^2 v dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \tan v = - \log \left| x \right| + \log C \]
\[ \Rightarrow \tan v = \log \left| \frac{C}{x} \right|\]
\[\text{ Putting }v = \frac{y}{x},\text{ we get }\]
\[\tan \left( \frac{y}{x} \right) = \log \left| \frac{C}{x} \right|\]
\[ \Rightarrow \tan \left( \frac{y}{x} \right) = \log \left| \frac{C}{x} \right|\text{ is the required solution }.\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(1 + x2) dy = xy dx
xy (y + 1) dy = (x2 + 1) dx
(y + xy) dx + (x − xy2) dy = 0
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
y ex/y dx = (xex/y + y) dy
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.