Advertisements
Advertisements
प्रश्न
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
उत्तर
We have,
\[\frac{dy}{dx} = \frac{y}{x} + \sin \left( \frac{y}{x} \right)\]
This is a homogeneous differential equation.
\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]
\[v + x\frac{dv}{dx} = v + \sin v\]
\[ \Rightarrow x\frac{dv}{dx} = v + \sin v - v\]
\[ \Rightarrow \frac{1}{\sin v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int \frac{1}{\sin v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \int cosec\ v\ dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow \log \left| \tan \frac{v}{2} \right| = \log \left| Cx \right|\]
\[ \Rightarrow \tan \frac{v}{2} = Cx\]
\[\text{Putting }v = \frac{y}{x},\text{ we get}\]
\[ \Rightarrow \tan \left( \frac{y}{2x} \right) = Cx\]
\[\text{Hence, }\tan \left( \frac{y}{2x} \right) = Cx\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Show that y = AeBx is a solution of the differential equation
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
C' (x) = 2 + 0.15 x ; C(0) = 100
x cos2 y dx = y cos2 x dy
tan y dx + sec2 y tan x dy = 0
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
Solve the following differential equation.
`(dθ)/dt = − k (θ − θ_0)`
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.
x2y dx – (x3 + y3) dy = 0
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation
sec2 x tan y dx + sec2 y tan x dy = 0
Solution: sec2 x tan y dx + sec2 y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log |f(x)| + log c
∴ the general solution is
`square + log |tan y|` = log c
∴ log |tan x . tan y| = log c
`square`
This is the general solution.