Advertisements
Advertisements
प्रश्न
(y2 − 2xy) dx = (x2 − 2xy) dy
उत्तर
We have,
\[\left( y^2 - 2xy \right) dx = \left( x^2 - 2xy \right) dy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y^2 - 2xy}{x^2 - 2xy}\]
This is a homogeneous differential equation .
\[\text{ Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get }\]
\[v + x\frac{dv}{dx} = \frac{v^2 x^2 - 2v x^2}{x^2 - 2v x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v^2 - 2v}{1 - 2v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{3 v^2 - 3v}{1 - 2v}\]
\[ \Rightarrow \frac{1 - 2v}{3 v^2 - 3v}dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 - 2v}{3 v^2 - 3v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \int\frac{2v - 1}{3 v^2 - 3v}dv = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\int\frac{6v - 3}{3 v^2 - 3v}dv = \int\frac{1}{x}dx\]
\[\text{ Putting }3 v^2 - 3v = t\]
\[ \Rightarrow \left( 6v - 3 \right) dv = dt\]
\[ \therefore - \frac{1}{3}\int\frac{1}{t}dt = \int\frac{1}{x}dx\]
\[ \Rightarrow - \frac{1}{3}\log \left| t \right| = \log \left| x \right| + \log C\]
Substituting the value of t, we get
\[ - \frac{1}{3}\log \left| 3 v^2 - 3v \right| = \log \left| x \right| + \log C\]
\[ \Rightarrow - \frac{1}{3}\log \left| v^2 - v \right| - \frac{1}{3}\log3 = \log \left| x \right| + \log C\]
\[ \Rightarrow - \frac{1}{3}\log \left| v^2 - v \right| = \log \left| x \right| + \log C - \frac{1}{3}\log3\]
\[ \Rightarrow - \frac{1}{3}\log \left| v^2 - v \right| = \log \left| x \right| + \log C_1 ...........\left(\text{where, }\log C_1 = \log C - \frac{1}{3}\log3 \right)\]
Substituting the value of v, we get
\[ - \frac{1}{3}\log \left| \left( \frac{y}{x} \right)^2 - \left( \frac{y}{x} \right) \right| = \log \left| x \right| + \log C_1 \]
\[ \Rightarrow - \frac{1}{3}\log \left| \frac{y^2}{x^2} - \frac{y}{x} \right| = \log \left| C_1 x \right|\]
\[ \Rightarrow \log \left| \frac{y^2 - xy}{x^2} \right| = - 3\log \left| C_1 x \right|\]
\[ \Rightarrow \log \left| \frac{y^2 - xy}{x^2} \right| = \log \left| \frac{1}{{C_1}^3 x^3} \right|\]
\[ \Rightarrow \frac{y^2 - xy}{x^2} = \frac{1}{{C_1}^3 x^3}\]
\[ \Rightarrow x y^2 - x^2 y = \frac{1}{{C_1}^3}\]
\[ \Rightarrow x^2 y - x y^2 = - \frac{1}{{C_1}^3}\]
\[ \Rightarrow x^2 y - x y^2 = K ...........\left(\text{where, }\log K = - \frac{1}{{C_1}^3} \right)\]
APPEARS IN
संबंधित प्रश्न
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
C' (x) = 2 + 0.15 x ; C(0) = 100
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y2 + 1) dx − (x2 + 1) dy = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
Define a differential equation.
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation y1 y3 = y22 is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
`dy/dx + y` = 3
The solution of `dy/ dx` = 1 is ______
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
y2 dx + (xy + x2)dy = 0
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.