हिंदी

Write the Differential Equation Obtained Eliminating the Arbitrary Constant C in the Equation Xy = C2. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.

उत्तर

We have,
\[xy = C^2 \]
Differentiating with respect to x, we get
\[x\frac{dy}{dx} + y = 0\]
\[ \Rightarrow x\frac{dy}{dx} = - y\]
\[ \Rightarrow x dy = - y dx\]
\[ \Rightarrow x dy + y dx = 0\]
Hence, x dy + y dx = 0 is the required differential equation .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Very Short Answers [पृष्ठ १३८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Very Short Answers | Q 6 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

x cos2 y  dx = y cos2 x dy


y (1 + ex) dy = (y + 1) ex dx


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[x\frac{dy}{dx} = x + y\]

(y2 − 2xy) dx = (x2 − 2xy) dy


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×