Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x\]
\[\Rightarrow \frac{dy}{dx} = x \tan^{- 1} x\]
\[ \Rightarrow dy = \left( x \tan^{- 1} x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( x \tan^{- 1} x \right)dx\]
\[ \Rightarrow \int dy = \tan^{- 1} x\int x dx - \int\left[ \frac{d}{dx}\left( \tan^{- 1} x \right)\int x dx \right]dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\frac{x^2}{1 + x^2}dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\frac{x^2 + 1 - 1}{1 + x^2}dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}\int\left( 1 - \frac{1}{1 + x^2} \right)dx\]
\[ \Rightarrow y = \frac{x^2 \tan^{- 1} x}{2} - \frac{1}{2}x + \frac{\tan^{- 1} x}{2} + C\]
\[ \Rightarrow y = \frac{\left( x^2 + 1 \right) \tan^{- 1} x}{2} - \frac{1}{2}x + C\]
\[\text{ Hence, }y = \frac{\left( x^2 + 1 \right) \tan^{- 1} x}{2} - \frac{1}{2}x +\text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
x cos y dy = (xex log x + ex) dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The differential equation satisfied by ax2 + by2 = 1 is
Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve the following differential equation.
`dy/dx + 2xy = x`
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
y2 dx + (xy + x2)dy = 0
Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is