हिंदी

Find the Particular Solution of the Differential Equation D Y D X = − 4 X Y 2 Given that Y = 1, When X = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.

उत्तर

We have,
\[\frac{dy}{dx} = - 4x y^2 \]
\[ \Rightarrow \frac{1}{y^2}dy = - 4x dx\]
Integrating both sides, we get
\[\int\frac{1}{y^2}dy = - 4\int x dx \]
\[ \Rightarrow - \frac{1}{y} = - 4 \times \frac{x^2}{2} + C\]
\[ \Rightarrow - \frac{1}{y} = - 2 x^2 + C . . . . . (1)\]
\[\text{ It is given that at }x = 0, y = 1 . \]
Substituting the values of x and y in (1), we get
\[C = - 1\]
Therefore, substituting the value of C in (1), we get 
\[ - \frac{1}{y} = - 2 x^2 - 1\]
\[ \Rightarrow y = \frac{1}{2 x^2 + 1}\]
\[\text{ Hence, }y = \frac{1}{2 x^2 + 1}\text{ is the required solution .} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 51 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \sec\left( x + y \right)\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

x2 dy + y (x + y) dx = 0


\[xy\frac{dy}{dx} = x^2 - y^2\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


y2 dx + (x2 − xy + y2) dy = 0


Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.


The solution of `dy/ dx` = 1 is ______


Solve the differential equation xdx + 2ydy = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×