हिंदी

Prove that: ∫02af(x)dx=∫0af(x)dx+∫0af(2a-x)dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`

Hence show that:

`int_0^pi sin x  dx = 2 int_0^(pi/2) sin x  dx`

प्रमेय

उत्तर

Since ‘a’ lies between 0 and 2a,
we have

`int_0^(2a)f(x)dx=int_0^af(x)dx+int_a^(2a)f(x)dx,  .......(byint_a^bf(x)dx=int_a^cf(x)dx+int_c^bf(x)dx)`

`=I_1+I_2`     ........................(say)

`I_2 = int_a^(2a)f(x)dx`

Put x = 2a − t

Therefore, dx = −dt

When x = a, 2a − t = a

t = a

When x = 2a, 2a − t = 2a

t = 0

`I_2 = int_0^(2a) f(x) dx = int_a^0 f(2a - t) (-dt)`

`= -int_a^0 f(2a - t)dt = int_0^a f(2a - t)dt      ...................... (By int_a^b f(x)dx = -int_b^a f(x)dx)`

`=int_0^a f(2a - x)dx    ..............(By int_a^b f(X)dx = int_a^b f(t)dt)`

`int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

`= int_0^a [f(x) + f(2a - x)]dx`

To show that:

`int_0^pi sin x  dx = 2 int_0^(pi/2) sin x  dx`

We use the proven property by setting f(x) = sin x and 2a = π, which means a = `pi/2`.

The property tells us that:

`int_0^pi sin x  dx = int_0^(pi/2) sin  x  dx + int_0^(pi/2) sin (pi - x)  dx`

Knowing the trigonometric identity sin (π - x) = sin x, the equation simplifies to:

`int_0^pi sin x  dx = 2 int_0^(pi/2) sin x  dx`

This directly applies the property to the integral of sin x over [0, π] to show it equals twice the integral of sin x over `[0, pi/2]`, demonstrating the utility of this property in simplifying integrals with symmetric functions over specific intervals​.

shaalaa.com

Notes

Students should refer to the answer according to their questions.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Verify that y = cx + 2c2 is a solution of the differential equation 

\[2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0\].

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

(1 + x2) dy = xy dx


\[x\frac{dy}{dx} + y = y^2\]

(ey + 1) cos x dx + ey sin x dy = 0


x cos2 y  dx = y cos2 x dy


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

y (1 + ex) dy = (y + 1) ex dx


(y + xy) dx + (x − xy2) dy = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


In a bank principal increases at the rate of r% per year. Find the value of r if ₹100 double itself in 10 years (loge 2 = 0.6931).


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \left( x + y \right)^2\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

(y2 − 2xy) dx = (x2 − 2xy) dy


3x2 dy = (3xy + y2) dx


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


A population grows at the rate of 5% per year. How long does it take for the population to double?


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

 

Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation y1 y3 = y22 is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx = x^2 y + y`


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


The solution of `dy/ dx` = 1 is ______


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve:

(x + y) dy = a2 dx


Solve

`dy/dx + 2/ x y = x^2`


x2y dx – (x3 + y3) dy = 0


 `dy/dx = log x`


y dx – x dy + log x dx = 0


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the differential equation xdx + 2ydy = 0


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


The function y = ex is solution  ______ of differential equation


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×